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The possibility of calculating separated flows by means of integral methods of boundary- 
layer theory was demonstrated in [i]. In [2], it was Shown that by solving the inverse pro- 
blem for the complete system of boundary-layer equations and taking into account interaction 
with the external flow, it is relatively simple to calculate flows with thin separatedregions 
without having to resort to integration of the Navier-Stokes equations. This approach is 
now used mainly to describe flows around airfoils [3, 4]. The goal of the present investiga- 
tion is to develop a computational method that, while staying within the framework of the 
theory of interacting boundary layers, would make it possible to calculate a somewhat different 
class of flows - flows that are frequently encountered in pratical applications. We are con- 
cerned in particular with flows in diffuser channels and channels in which two flows are 
separated. We will examine both laminar and turbulent flows. A method is proposed for speed- 
ing up the convergence of the iteration. 

i. It should be noted that, in principle, there are several different ways to describe 
strong interaction (the latter being the main feature of separated flows). The methods can 
be classified according to criteria such as the type of problem (direct or inverse) that is 
solved for the external flow and the boundary layer. The first possiblity is a purely direct 
problem. Here, a determination is made of the velocity of the inviscid flow along the sur- 
face u e. Then the displacement thickness 6 is found and the contour of the surface is ad- 
justed for this value. Finally, the value of u e is calculated a second time. This pro- 
cess is continued until a steady-state is established and can be represented in the form of 
the scheme 

u ~--+ 5 - - +  u e - +  5 - +  . . .  ( 1 . 1 )  

The second possiblity is a purely inverse problem. First we assign the displacement thick- 
ness. We determine the velocity on the external boundary U e from the inverse problem for 
the boundary layer. This velocity should coincide with the velocity in the inviscid flow. 
To ensure satisfaction of the latter condition, we solve the inverse problem for the ex- 
ternal flow and find the new distribution of 6, etc. This procedure can be represented sche- 
matically in the form: 

6 - "  U e - +  6 - +  U ~ - r  . . .  (1.2) 

The third possibility is to solvean inverse-direct problem. We assign the distribution of 
u e and find two displacement thicknesses: 6 from the solution of the direct problem for the 
boundary layer and 6 from the solution of the inverse problem for the external flow. The 
value of u e is corrected on the basis of the difference of these two results and the process 
is repeated: 

,~5~ .x6x 
u~,  ; n,,x, ,~ . . .  ( 1 . 3 )  

" A  A 

Finally, we can examine a direct-inverse problem. Here, we specify the displacement thick- 
ness and find u e (direct problem) and U e (inverse problem for the boundary layer), then using 
the difference of the latter two quantities to correct 6: 
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There are also other approaches, normally used within the framework of the three-deck 
model in [5]. The approaches represented by (I.i) and (1.3) involve the solution of a direct 
boundary-layer problem and, thus, the appearance of a Gol'dshtein singularity [5]. Thus, the 
solution of problems within the framework of these approaches requires the use of special 
procedures to avoid the appearance of singularities during numerical integration of the 
boundary-layer equations. Such procedures are usually not universal, and the iterative pro- 
cess often does not converge. The use of approach (1.2) involves the solution of an inverse 
problem for an inviscid flow. Obtaining such a solution is very difficult in certain cases - 
such as in channels - while there is a whole range of effective algorithms for solving 
direct problems in the case of inviscid flows. The approach which is currently most widely 
used to describe viscid/inviscid interaction is the direct-inverse approach (i~4). We will 
use this approach to construct our computing method as well. 

2. Figure i shows sketches depicting plane flows of an incompressible fluid that we 
will be examining (a - fi0w past a free surface whose contour is described by the equation 
y = r(x); b - flow in a channel; c - motion of two flows with different total pressures 
past a divider installed in a channel). It is assumed that the Reynolds number Re is large 
and that the characteristic dimension of a nonuniformity on the surface over which the flow 
is travelling is on the order of the thickness of the boundary layer (Ar = 0(6). Thus, the 
separation zones will be thin. When we analyze the flow in the channel, moreover, we assume 
that there is an inviscid core and boundary layers. The transverse dimension of the core 
is on the order of the channel width R - r. In addition, 6 ! (R - r). 

When these conditions are satisfied, the boundary layer is conveniently described in 
the variables 

X = x,  Y = y - -  r(x), U = u; V = v - -  u (dr/da') 

(x and y are cartesian coordinates (see Fig. i); u and v are components of the velocity vec- 
tor in these coordinates). The equations have the standard form in the new variables 

u a u / a x  + v a u / a Y  = 13 + a((v + ~ ) a u / a Y ) / a Y ;  ( 2 . 1 )  

OV/OY = - - O U / O X .  ( 2 . 2 )  
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Here, we have also introduced the notation; ~ = UflUe/dX, Ue(X) = lira U(X, Y), , v is laminar 

viscosity, E is eddy viscosity. The latter quantity can be found by means of a semi-em- 
pirical model. It should be pointed out that the parameter $ is not known beforehand in 
the inverse problem. To determine it, we must assign the distribution of the displacement 

thickness 

1' ([ - -  U/Ue)dr  = 6 (X). ( 2 . 3 )  
o 

The boundary conditions for system (2.1)-(2.2) 

I" = 0 U = V = O, Y - ~  OU/OY---*O, ( 2 . 4 )  

while the distribution of longitudinal velocity in the initial section must be specified 

u(o, i )  = Ue(O) I (t3 ( 2 . 5 )  

We assumed in the calculations that the initial section of the surface was a straight line 
r = const, in the laminar case, f(Y) was found from the Blausius solution. In the turbu- 
lent case, it was approximated by the velocity profile on a plate [6]. 

Problem (2.1)-(2.5) was solved numerically. Equation (2.1) was written in finite-dif- 
ference form by means of the Crank-Nicolson scheme in central differences in the variable 
Y. The use of this scheme with a uniform grid ensured second-order approximation with re- 
spect to this coordinate. Since Eq. (2.1) is nonlinear, we used local (in each section) 
iterations to realize a second-order approximation with respect to X. In writing the con- 
vective terms in the region of reverse flow (U < 0), we used the approximation [7] U3U/SX = 
0, if U < 0. In solving the problem of interaction in the reverse flow zone, for certain 
calcutions we approximate 8U/3X with differences directed counter to the flow. In this case, 
the missing values of U were taken from the previous calculation. The results obtained in 
the two cases were nearly the same, although the first method [7] requires less computing 
time. We took central differences for the discretization of (2.2), while the trapezoid for- 
mula was used in writing the integral (2.3). Thus, on the whole, the numerical method re- 
presented a second-order approximation. 

Since the parameter ~ and the field U are both unknown in (2.1), finite-difference 
analogs (2.1) and (2.3) have to be solved together in any section. The corresponding system 
of difference equations has the form 

a#U~+~ --  bjUj  + c j U ~ l  = ej~ + di, 2 ~ j ~ N - -  I; ( 2 . 6 )  

N 
u ' S j  : O; ( 2 .7  ) 

j = l  

UI = O, U s  = Us_l ,  ( 2 . 8 )  

where the form of the coefficients has been omitted to save space; N is the number of grid 
points along Y. Equations (2.8) constitute a difference approximation of boundary condi- 
tions (2.4). To avoid additional iterations in the solution of system (2.6)-(28), we used 
a modification of the trial-run method 

Uj+I = D j U i  + Gj + Ej~. (2.9) 

Using the second boundary condition of (2.8) and relations (2.6) along with recursion for- 
mulas, we find the necessary correction factors. Inserting (2.9) into (2.7), we exclude Uj. 
Considering that U I = 0, we find 6. We then use an inverse trial run and Eq. (2.9) to de- 
termine the field U. It is not hard to show that the sufficient conditions for stability 
(the conditions for aj, bj, cj) for the modification of the trial-run method are the same 
as in the usual case ~8]. 

Along with the method of solution described above, we also tried a variant in which, 
instead of problem (2.1)-(2.4), we examine an equivalent problem 
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UOodOX + VOcolOlr = a~-((V + s)(,))/OY:; 

OU/OY = (o; 

(2.10) 

(2.11) 

OVIOY = --OU/OX; ( 2 . 1 2 )  

i ( Y - - 6 ) ~ d Y  = O; (2.13) 
o 

Y = 0  U =  V = O ,  Y - + o o  o)--+0. ( 2 . 1 4 )  

As in the first case, when we use these difference schemes we find that it is necessary to 

solve the following system in the cross section 

aj (0 j+  1 -- b ] ~ ]  + c j ( o j _  1 = d], 2 ~ j ~ N - - 1 ;  (2.15) 

N 

e-~oy = O; ( 2 . 1 6 )  
d=t 

~N = 0. (2.17) 

We used the standard trial-run formulas to solve system (2.15)-(2.17). However, since we 
had integral equation (2.16) in place of one of the boundary conditions, we found ~i by 
means of the same elimination method as was used to determine 6. This approach provides 
the same degree of accuracy but saves somewhat on computer memory, since fewer correction 

factors need to be stored. 

In most of the calculations presented below, the grid was uniform with respect to X, 
while the subdivision along Y was made denser toward the wall in accordance with the re- 
commendations in [9]. It should be noted that when flows in channels are being examined, 

the corresponding problem must he solved for the boundary layer on each surface. 
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3. We described turbulent flows by means of the one-parameter model in [i0] 

UOe/OX -4- VOEIOY = O((• -k v)OslaY)tOY + ~slau/oY[ - -  ?~(~e + v)lY 2, (3.1) 

where x, u and ~ are coefficients; ~ is a function of the ratio s/v. The boundary condi- 
tions have the form 

Y = 0  ~ = 0 ,  Y - + o o  8s /SY-+O.  

As the initial conditions, we asigned the distribution of eddy viscosity in the boundary 
layer on a flat plate [6]. For numericalintegrati0n of (3.1), we used the same finite dif- 
ference scheme as for (2.1). 

The model in [i0] has been proven valid in many different cases and is particularly 
suited for calculations of attached boundary layers, mixing layers, and jets. To evaluate 
the accuracy of the description of separation, we examined the flow observed experimentally 
in [Ii]. We solved the inverse problem. Here, the distribution of ~(X) was borrowed from 
[ii], while a comparison was made for theoretical and measured distributions of velocity 
and shear stress. In Fig. 2, velocity is referred to the velocity in the given section 
(U ~ = U/Ue(X)); the shear stresses ~ are referred to the velocity head (~0 = T/pU~(X)); the 
longitudinal coordinate is referred to the quantity L, which is equal to the distance from 
the inlet to the model to the last section in which measurements were made (L = 508 cm), 
(X ~ = X/L, y0 = y/f). The points show the experimental results, while the curves show 
the calculated results: X ~ = 0.694 (i), 0.724 (2), 0.782 (3). The coefficients in Eq. (3.1) 
were taken from [i0] and were not specially corrected. Nevertheless, the model satisfac- 
torily describes the distribution of the parametes in the separation zone. 

4. The inviscid external flow is assumed to be a potential flow, i.e., if we intro- 
duce the function ~, it should satisfy the Laplace equation: 

( 4 . 1 )  

To solve the problem on the interaction of the boundary layer with the external flow, 
it is sufficient to know the distribution of the velocity of the inviscid flow (u e) along a 
contour corrected for the displacement thickness (such as at y = r + ~ (see Fig. la)). It 
should be noted that only when this method of determining u e is used will its combination 
with longitudinal velocity in the boundary layer also ensure combination with the transverse 
components. In problems concerning flow past a free surface, by using the theory of thin 
bodies it is possible to represent u e in the form of an integral [2] 

t<, (z)  = i v  (z)  + ._s (4.2) 

where IV(x)= us + 7 (dr/d~)/(x--~)d$; u= is the velocity of the incoming flow. With an 

assigned displacement thickness, Eq. (4.2) makes it possible to find Ue(X). In numerical 
calculations, the integrals are taken over a finite segment outside of which dr/dx = 0. 
Also, it is possible to ignore the contribution of d6/dx in this case. The size of this 
region should be determined from the condition of the independence of the results from the 
limits of intregration. 

In a channel, calculation of Ue(X) requires the solution of (4.1). Here, it is con- 
venient to change over to the variables 

= x ,  q = [ y - -  ( , - +  6 ) ] / [ ( ~ - -  @)- -  (r §  

(R and r a r e  t h e  c o n t o u r s  o f  t h e  t o p  and b o t t o m  w a l l s  ( s e e  F i g .  l b ) ;  0 and 5 a r e  t h e  c o r -  
r e s p o n d i n g  d i s p l a c e m e n t  t h i c k n e s s e s ) .  As t h e  b o u n d a r y  c o n d i t i o n s ,  we a s s i g n  t h e  d i s t r i b u t i o n  
of the stream function at the inlet and the upper and lower boundaries. At the outlet we 
impose the condition 8~/8~ = 0, which gives a linear distribution of v and ensures that the 
solutions can be combined in the outlet section. In all of the calculations we performed, 
the flow at the inlet was assumed to be uniform, i.e., q~ ~ u~(U-- r-- 6) at x = 0, while 
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the conditions of nonflow at y = r - 6 and y = R - 0 had the form ~ = 0 and ~ = Q (Q is the 
total discharge through the channel). 

Finite difference analog (4.1), written in accordance with a second-order approximation 
scheme, was integrated by the iterative method of variable directions [8]. 

5. To combine the solutions in the boundary layer and the external flow, we need to 
satisfy the condition Ue(x) = Ue(X). This allows us to find the displacement thickness. 
However, U e and u e functionals of ~ whose explicit form is unknown. This compels us to use 
the iterative approach (1.4) to solve the direct-inverse problem. The organization of the 
iterations is a very important element of the method of calculation, and the overall volume 
of computation that is needed depends to a significant extent on the efficiency of this al- 
gorithm. 

A simple iteration formula was proposed by Carter in [2] 

5~+~/6~ = 1 + ~((u~ - -  U~)IU~h (5.1) 

(i is the number of the iteration; ~ is the relaxation parameter). It is not possible 
to make an a priori estimate of ~. An acceptable value of this quantity is chosen during 
calculations, which diminishes the efficiency of the method. We attempted to formulate a 
more effective and more reliable algorithm which speeds up the convergence of the process 
(1.4). 

The integral in (4.2) is approximated in accordance with the trapezoid formula 

51 

lL., = W~ + ~ Ck~UhG. 
h = l  

(5.2) 

Here, for brevity we have omitted the form of the coefficients Ckm and dropped the index e 
in the velocity notation; k and m are the numbers of grid points along x; M is the total 
number of grid nodes. Analyzing the integral momentum equation for the boundary layer, we 
obtain an approximate relation which is valied in each section x: 

z u / u  = -(:x6/6)/(2 + H) (5.3) 

( AU : Ui+t-- Ui, A6 : 6i~ -- 6~ , H is the form factor). Finally, having required satis- 
faction of the Ui+ z = U i, we can use (5.2)-(5.3) to obtainasystem of linear algebraic equa- 
tions to find corrections to the displacement thickness 

31 

(u -- U)~ ---- ~ F~A(St~. (5.4) 
h=l 

Having solved system (5.4) by the Gauss elimination method with isolation of the principal 
element, we find the new distribution of 6: 

6i+1 = 6i + ~-~6. ( 5 . 5 )  

The parameter ~ was taken equal to 0.5 in all cases. It should be noted that although we 
derived (5.4) with the use of Eq. (4.2) - which is valid for free flow - this iteration 
formula can actually also be used for calculations of flows in channels. 
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The efficiency of the method was checked using the example of flow past a depression 
on a surface (see Fig. i). The form of the depression was described by the relation r(x)/L = 

0.0514(x ~ 1.5) ~- lJ ~ with 1~xU~2, r(x) = 0, x ~ > 2, x ~ < i, where x~ Here, L is 
the depth of the depression. The flow in this case is laminar, and Ax ~ = I. The point at 
which the boundary layer begins is located the distance Ax ~ = 1 from the depression. Figure 
3 shows the distributions of the displacement thickness (50 = 5/L) and friction on the wall 
(t ~ = TJgU~ ) . It is evident that there is a separation zone. Also shown in the figure are 
the dynamics of the convergence of the iterations, ~ ~ I(ue -- Ue)/UeI ; I is the number of 
the iteration; 1 shows the results it calculations with Eq. (5.1) for ~ = 0.5; 2 shows the 
same when ~ = 1.2; 2 shows the results obtained by the proposed method (5.4)-(5.5). If we use 
(5.1), then convergence does not occur when we attempt to assign ~ greater than 1.2, i.e., 
curve 2 turns out to be close to the limiting convergence curve. It isclear from this that the 
use of (5.4)-(5.5) actually speeds up convergenceby at least 30%. We subsequently used only 
this approach to calculate free flows and flows in channels (see Fig. la and b). 

6. To evaluate the possibility of calculating different flows in the channel,, we ex- 
amined two situations, i. Laminar flow in a symmetrical diffuser channel (R(x) = --r(x), 
R(x)/L = l  A-O.O8(x ~  1 ) ~ ( 5 - - 2 x  ~ a t  l ~ < x  ~  R(x) = 1 a t  x ~ 1; R(x) = t .08 a t  x ~ 
x ~ = x/L; ; L is the length of the transitional section). Such a flow was calculated in 
[12] by means of parabolized Navier-Stokes equations. 2. Turbulent flow in an as3nnmetric 
d i f f u s e r  c h a n n e l  (R/L=O.75;r(x)/L: 0 . 2 0 1 - - t , 9 8 1 ( x ~  3 ~  2 .956(x~176  5 a t  O~x~ = 
0.201 a t  x ~  r = 0  a t  x ~  T h i s  t y p e  o f  f l o w  was s t u d i e d  e x p e r i m e n t a l l y  i n  [ 1 3 ] .  

I n  t h e  f i r s t  c a s e  Re = u~LIv = 6,25.103 , t h e  b o u n d a r y  l a y e r  d e v e l o p e s  f r o m  a p o i n t  
l o c a t e d  t h e  d i s t a n c e  Ax ~ = 2 . 9 6  f r o m  t h e  t r a n s i t i o n a l  s e c t i o n .  I n  t h e  c a l c u l a t i o n ,  t h e  
i n i t i a l  s e c t i o n  was p l a c e d  a t  t h e  d i s t a n c e  Ax ~ = 1 f r o m  t h e  t r a n s i t i o n a l  s e c t i o n .  The  d i s t r i b u -  
t i o n  of friction on the channel wall is shown in Fig. 4 (~0 = ~wlpu~): the solid line shows 
the results of the present study, while the points show data from [12]. It is evident that 
the two sets of results agree well with one another. Shown along with this information 
is the result of calculations performed within the framework of a parabolic approxi- 
mation (dashed curve). 

In the parabolic approximation, the boundary-layer equations were used to describe the 
entire flow field, while pressure was assumed to have been constant across the channel. Here, 
the size of the separation zone is reduced by a factor of 3 and, as is shown by other comparisons, 
has an error of up to 10% in the determination of the pressure gradient. Thus, when examin- 
ing separated flows in a channel, it is important to consider the interaction of the boundary 
layer with the inviscid core. Then the boundary-layer approximation will provided a good 
description of the flow. 

The turbuelent flow in the asysmmetric diffuser is characterized by Re = 5.85"105 . The 
boundary layer develops from a point located the distance Ax ~ = 2.7 from the transitional 
section. The initial section was placed the distance Ax ~ = 1 from the transitional section. 
Figure 5 shows the distributions of friction on the undeformed wall (~0 = mJpu$) and the 
pressure at this surface (cp=2(p--po)/gu~,p0 , where P0 is the pressure at the beginning of 
the transitional section); the solid line shows the calculation, while the points show the 
experiment [13]. The distribution of friction in the separation region is described satisfac- 
torily, although some divergence is seen on the acceleration section. In turn, the theore- 
tical pressure in the separation zone is somewhat exaggerated. Nonetheless, on the whole the 
correspondence can be considered satisfactory. However, to improve the accuracy of the re- 
sults, it will be necessary to improve the turbulence model [I0]. Calculations of flows in 
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channels were performed on grids containing 50 nodes along the x axis, 60 nodes along y in 
the boundary layer, and 20 nodes along y in the inviscid core. Computing time on an ES- 
1061 computer was roughly 5 min. 

7. Finally one other type of flow which can be calculated in the approximation of an 
interacting boundary layer is flow past a divider installed in a channel (see Fig. ic). The 
strong interaction of the boundary layer with the external flow near the trailing edge in this 
case is due both to an abrupt change in boundary conditions and to possible separation from 
the surface of the divider. An important difference between the given problem and the pro- 
blem of flow past the trailing edge of an airfoil [4] is that the wake develops in channel. 
Also, the overall parameters (the Bernoulli constants in the incompressible fluid) may be 
different in the upstream and downstream flows. As a result of these circumstances, another 
parameter - the position of the wake - appears in the interaction problem. 

As a line characterizingthe position of the wake, we introduce a separating streamline 
(y = r(x)) which continues the surface in the flow to the trailing edge (x = z). We desig- 
nate the displacement thickness of the boundary layer and the wake as 6+ above this line and 
as 6_ below it. The flow is calculated in the following manner. With assigned 6+, 6_, and 
r, we independently determine the inviscid flows in the top and bottom halves by the same 
method as for a separate channel. In the region x 5 z we solve two inverse problems (2.1)- 
(2.5) for boundary layers with assigned 6+ and 6_. In the region x > z, it is also possible 
to solve problem (2.1)-(2.5) for the upper and lower parts of the wake. However, here it is 
necessary to replace the attachement boundary condition by the condition of continuity of the 
velocity field on the separating streamline 

y = o  [ U l = O ,  [ a u / a Y ]  = O, v = o, ~+ = [L, (7.1) 

where [...] denotes a discontinuity of a parameter. By virtue of the last condition of (7.1), 
we can assign only one of the quantities 6+ or 6_, from the side of the divider on which sepa- 
ration occurs (i.e., in the scheme depicted in Fig. ic we assign 6 ), 

Two combination conditions (Ue)+ = (Ue)+, (Ue)_ ~ (u~)_ make it possible to determine 
6+ and 6_ in the region x ~ z and 6 and r in the region x > z. The: corresponding iterative 
algorithm is a generalization of the Carter algorithm. Thus, we use (5.1) at x < z, while 
atx>z 

(6)~+((6_)~ = t + ~ ( ( u  - U_)/U_)~ + ~((u+ + U+)~U+h, 
ri+l/r ~ = I + %1((u_ -- U_)/U_)i + Z2((u+ + U+)/U+)I. 

Convergent solutions are obtained at 91 z 1.0; P2 z O; XI = O; Ix = 0.i. It is difficult to 
generalize algorithm (5.4)-(5.5) because there is no explicit expression for the dependence 
of 6+ on 6_. 

As an example, we examined laminar flow past a divider whose form is described by the 
relation r(x)/L = I +tan a(x ~ 0,9) at 0,9 ~ x ~ if0, and r(x)/L = 1 at x ~ <_ 0.9. Here 
x ~ = x/L. The quantity L is the length of the deflected part. The value of a = 5 ~ . 
The sudden change in the contour of the parallel-walled channel at x ~ = 0.9 is smoothed 
with a radius of curvature equal to unity. The boundary layers on the divider develop from 
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a point located the distance Ax ~ = 3.01 from the trailing edge. The boundary layers on the 
walls of the channel were not taken into account. The value of Re = 104 . We varied the 
ratio of the velocities at the inlet to the upper and lower parts of the channel (m = (U=o)+/(u~)_) , 

there having been a proportionate change in Re+ (at m = I, Re+ = Re_). Figure 6 shows the 
positions of the separating streamlines (r ~ = r/L) at m = 0.05 (i), 1.0 (2), and 2.0 (3). 
The dashed lines show the corresponding results for the inviscid flow. Also shown is a com- 
parison of the distributions of pressure (cp - (p-- p,)/p(u~)~ , where P0 is the pressure at 
the outlet of the channel) in the inviscid and viscid flows at m = 1.0. In the inviscid flow, 
the position of the separating line depends weakly on m. Separtion is seen in the viscid 
flow near the trailing edge. The intensity of this separation increases with a decrease in 
m. The separating line is heavily deformed near the edge in this case. Rarefaction is 
seen in the viscous flow near the edge. This situation is interesting because it is possible 
to control the separation of one flow by changing the conditions in the other flow. 

The results presented above show that the computing method used here to integrate the 
equations of an interacting boundary layer makes it possible to efficiently calculate a 
number of separated flows that are of practical interest. 
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